The Crystal Structure of $\mathbf{G d A g}_{3.6}{ }^{*}$

By D. M. Bailey and G.R.Kline
Institute for Atomic Research and Department of Metallurgy, Iowa State University, Ames, Iowa 50010, U.S.A.

(Received 7 March 1970)

Abstract

The crystal structure of the intermetallic phase $\mathrm{GdAg}_{3 \cdot 6}$ has been determined using three-dimensional diffractometer data from three different crystals. The space group is $P 6 / m$, with lattice parameters $a=12.670$ and $c=9.332 \AA$. One disordered silver set is partially occupied. The range of stoichiometry of the phase is thought to be quite limited, corresponding to approximately 50% occupancy of the disordered set (X-ray density $=9.86 \mathrm{~g} . \mathrm{cm}^{-3}$). On the basis of the very close correlation of the lattice parameters, this phase, common to many of the rare-earth-silver systems, likely defines the structure of the previously reported phase PuAg_{3}.

Introduction

The silver-rich phases of the RE-silver equilibrium systems ($\mathrm{RE}=\mathrm{Y}, \mathrm{La}, \mathrm{Ce}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}$) were investigated by Steeb, Godel \& Löhr (1968) who report on the basis of X-ray powder data, these phases to be isotypes of the phase $\mathrm{PuAg}_{3} \dagger$ found by Runnalls (1956). McMasters, Gschneidner \& Venteicher (1970) found metallographic evidence of two phases at this composition and report the formula $\mathrm{RE}_{2} \mathrm{Ag}_{7}(\mathrm{RE}=\mathrm{La}$, $\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}$ and Y). On the basis of the very close agreement in the hexagonal lattice parameters reported by the two sets of investigators it appears likely that both have indeed investigated the same intermetallic phases. The present investigation was undertaken as an adjunct to the work of McMasters et al. in an attempt to detail the structure and thus resolve the uncertainty in the stoichiometry of the phase.

Experimental procedure

Single crystals from sample preparations of nominal stoichiometries $\mathrm{GdAg}_{5}, \mathrm{GdAg}_{3 \cdot 5}, \mathrm{ErAg}_{3 \cdot 5}$ and LaAg_{3} were provided by McMasters et al. and were examined by Weissenberg and precession X-ray techniques. In every case $6 / m$ diffraction symmetry was observed. Contrary to the observations of Steeb et al. for REAg_{3} and of Runnalls for PuAg_{3}, weak reflections of the type $00 l$ with $l \neq 2 n$ were observed. Thus the probable space groups are $P 6, P \overline{6}$ and $P 6 / m$. Diffractometric intensity data were collected from three different single crystals using zirconium filtered Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$).
(1) 1800 data were collected, yielding 589 observed data, from a small ($\sim 7 \times 10^{-5} \mathrm{~mm}^{3}$) regular crystal of nominal stoichiometry GdAg_{3} by the 2θ scan technique using a General Electric single-crystal orienter

* Work was performed in the Ames Laboratory of the U. S. Atomic Energy Commision. Contribution No. 2689.
\dagger One of our referees, Quintin Johnson, with D. H. Wood, has corroborated the $\mathrm{GdAg}_{3 \cdot 6}$ structure for ' PuAg_{3} '.
equipped with a scintillation counter. No formal absorption corrections were applied to the data. However, a correction was made for the sinusoidal variation of the intensity with φ caused by the Pyrex mounting fiber passing through the beam path.
(2) 2400 data were recorded in a quadrant of the reflecting sphere out to $\theta=25^{\circ}$ from a crystal of nominal stoichiometry GdAg_{5} by the 2θ scan technique using an automated Hilger-Watts four-circle diffractometer. The φ dependence of the $00 l$ reflections measured at $\chi=90^{\circ}$ was slight. The equivalent reflections were averaged to yield 818 unique data and no absorption corrections were applied. Lattice parameters $a_{0}=12.671 \pm 0.003 \AA$ and $c_{0}=9.333 \pm 0.003 \AA$ were computed by a least-squares fit to the Nelson-Riley (1945) function.
(3) 2640 data were recorded from half the reflecting sphere out to $\theta=20^{\circ}$ from a crystal of nominal stoichiometry $\mathrm{GdAg}_{3 \cdot 5}$ in the same manner as for crystal 2. This crystal had the approximate form of a triangular pyramid $0.16 \times 0.12 \times 0.12 \mathrm{~mm}$ along the edges of the base and with altitude 0.65 mm . Absorption corrections were computed with the program of Busing \& Levy (1957) and after correction, the equivalent data were averaged to yield 439 unique data. Lattice parameters $a_{0}=12.670 \pm 0.003$ and $c_{0}=9.332 \pm 0.002 \AA$ were obtained as for crystal 2.

Structure determination

The data from crystal 3 were subjected to the statistical analysis of Howells, Phillips \& Rogers (1950). This analysis clearly indicated the presence of a center of symmetry. Accordingly, a trial structure containing 14 Gd and 49 Ag atoms was chosen in space group $P 6 / m$ with the aid of a Patterson synthesis. Refinement of the trial structure was by the full-matrix leastsquares program of Busing, Martin \& Levy (1962). The atomic scattering factors of Cromer \& Waber (1965) were corrected for anomalous dispersion (International Tables for X-ray Crystallography, 1962). Unit weights were applied in the early stages of refinement.

During the final stages other weighting schemes were applied. The refined parameters did not vary outside their standard deviations, nor did the residual vary more than 0.002 regardless of the weighting scheme used. All parameters reported herein are those achieved with unit weights.

During the course of the refinement several major adjustments, such as interchanging atomic species occupying specific sites, were made to the initial trial structure. These changes were made on the basis of the simultaneous consideration of difference syntheses, interatomic distances and the behavior of the isotropic temperature factors. By combination of least-squares refinement and such adjustments to the model the residual was rapidly reduced from the initial value 0.59 to 0.13 . At this stage, on the basis of the difference synthesis, the origin atom was removed. The residual

Table 2. Observed and calculated structure factors
immediately dropped to 0.097 , but new peaks in the difference synthesis indicated the need for an additional sixfold atom set near the origin with approximately 19-23 electrons at each site. The addition of a partially occupied set of silver atoms yielded a residual of 0.063 after refinement of the occupancy factor to 0.4742 . Further refinement with anisotropic temperature factors, holding the occupancy factor fixed,
yielded 0.045 for the residual for the 439 reflections obtained from crystal 3.

No significant shift in any of the parameters was obtained by attempting further refinement in the noncentric space groups. The refined parameters are given in Table 1. The observed and calculated structure factors are compared in Table 2. The trial structure was also refined with data from crystals 1 and 2 with

Table 3. Interatomic distances in $\mathrm{GdAg}_{3.6}$

Atom	Ligand	Distance	Atom	Ligand	Distance
$\mathrm{Gd}(1)$	$1 \mathrm{Gd}(1)$	$3.62 \AA$	$\mathrm{Ag}(4)$	$1 \mathrm{Gd}(1)$	3.08 A
	$6 \mathrm{Ag}(3)$	3.27		$1 \mathrm{Gd}(2)$	$3 \cdot 14$
	$6 \mathrm{Ag}(4)$	3.08		$1 \mathrm{Gd}(2)$	$3 \cdot 30$
	'6 Ag*	$3 \cdot 26$		$1 \mathrm{Gd}(3)$	$3 \cdot 34$
				$1 \mathrm{Ag}(3)$	2.87
$\mathrm{Gd}(2)$	$1 \mathrm{Ag}(1)$	$3 \cdot 21$		$1 \mathrm{Ag}(3)$	2.90
	$2 \mathrm{Ag}(4)$	$3 \cdot 14$		$2 \mathrm{Ag}(4)$	3.01
	$2 \mathrm{Ag}(4)$	$3 \cdot 30$		$1 \mathrm{Ag}(5)$	$2 \cdot 78$
	$2 \mathrm{Ag}(5)$	$3 \cdot 18$		${ }_{1} \mathrm{Ag}(6)$	2.94
	$2 \mathrm{Ag}(5)$	$3 \cdot 25$		${ }_{1} \mathrm{Ag}(6)$	3.03
	$2 \mathrm{Ag}(5)$	$3 \cdot 26$		${ }^{\prime} \mathbf{1 ~ A g}^{*}$	2.79
	$2 \mathrm{Ag}(6)$	$3 \cdot 16$		${ }^{\prime} 1 \mathrm{Ag}^{*}$	$2 \cdot 97$
	${ }^{\prime} 1 \mathrm{Ag}^{*}$	$2 \cdot 86$		${ }^{\prime} 1 \mathrm{Ag}^{*}$	$3 \cdot 92$
	${ }^{\prime} 1 \mathrm{Ag}^{*}$	$3 \cdot 63$			
Gd(3)			$\mathrm{Ag}(5)$	$1 \mathrm{Gd}(2)$	$3 \cdot 17$
	$2 \mathrm{Ag}(2)$	$3 \cdot 12$		$1 \mathrm{Gd}(2)$	$3 \cdot 25$
	$1 \mathrm{Ag}(3)$	$3 \cdot 19$		$1 \mathrm{Gd}(2)$	$3 \cdot 26$
	$2 \mathrm{Ag}(4)$	$3 \cdot 34$		$1 \mathrm{Gd}(3)$	$3 \cdot 29$
	$2 \mathrm{Ag}(5)$	$3 \cdot 29$		${ }_{1} \mathrm{Ag}(1)$	$2 \cdot 90$
	$2 \mathrm{Ag}(6)$	$3 \cdot 10$		${ }_{1} \mathrm{Ag}(2)$	2.87
	$2 \mathrm{Ag}(6)$	$3 \cdot 12$		${ }_{1} \mathrm{Ag}(4)$	2.78
	$2 \mathrm{Ag}(6)$	$3 \cdot 17$		${ }_{1} \operatorname{Ag}(5)$	2.85
	$1 \mathrm{Ag}(3)$	$3 \cdot 24$			3.00
$\mathrm{Ag}(1)$					
	$2 \mathrm{Ag}(2)$	2.79		${ }_{1} \operatorname{Ag}(6)$	$3 \cdot 00$
	$6 \mathrm{Ag}(5)$	$2 \cdot 90$			
$\mathrm{Ag}(2)$			Ag*		
	$1 \mathrm{Ag}(1)$	2.79		$1 \mathrm{Gd}(2)$	$2 \cdot 86$
	$1 \mathrm{Ag}(2)$	3.76		$1 \mathrm{Gd}(2)$	3.63
	$3 \mathrm{Ag}(5)$	$2 \cdot 87$		$2 \mathrm{Ag}(4)$	2.76
	$3 \mathrm{Ag}(6)$	2.90		$2 \mathrm{Ag}(4)$ $2 \mathrm{Ag}(4)$	2.97 3.92
$\mathrm{Ag}(3)$	$2 \mathrm{Gd}(1)$	$3 \cdot 27$		'2 Ag*	1.57
	$1 \mathrm{Gd}(3)$	$3 \cdot 19$			2.72
	$1 \mathrm{Gd}(3)$	3.24		${ }^{\prime} 1 \mathrm{Ag}^{*}$	$3 \cdot 14$
	$2 \mathrm{Ag}(4)$	2.87			
	${ }_{2} \operatorname{Ag}(4)$	2.90			
	${ }_{2} \mathrm{Ag}(6)$	$2 \cdot 80$			
	$2 \mathrm{Ag}(3)$	2.72			
$\mathrm{Ag}(6)$	$1 \mathrm{Gd}(2)$	$3 \cdot 16$			
	$1 \mathrm{Gd}(3)$	$3 \cdot 10$			
	$1 \mathrm{Gd}(3)$	$3 \cdot 12$			
	$1 \mathrm{Gd}(3)$	$3 \cdot 17$			
	$1 \mathrm{Ag}(2)$	$2 \cdot 91$			
	${ }_{1} \mathrm{Ag}(3)$	2.80			
	${ }_{1} \mathrm{Ag}(4)$	2.94			
	${ }_{1} \mathrm{Ag}(4)$	3.03			
	${ }_{1} \mathrm{Ag}(5)$	2.79			
	${ }_{1} \mathrm{Ag}(5)$	3.00			
	${ }_{1} \mathrm{Ag}(5)$	$3 \cdot 56$			
	${ }_{1} \mathrm{Ag}(6)$	$3 \cdot 16$			
	$1 \mathrm{Ag}(6)$	$3 \cdot 68$			

[^0]final residuals 0.139 and 0.067 respectively. The refined positional parameters obtained were within the standard deviations given in Table 1 for crystal 3. The section of the electron density synthesis at $z=0$ is shown in Fig. 1.

Discussion

The presence of a partially filled set in the structure implies a theoretical range of stoichiometry for the phase varying from $\mathrm{GdAg}_{3 \cdot 43}$ to $\mathrm{GdAg}_{3 \cdot 86}$ (0 to 100% occupancy of the Ag^{*} set in Table 1). Examination of the interatomic distances given in Table 3 shows that the distance between adjacent sites in the partially filled set is much too small ($1.57 \AA$) to permit simultaneous occupancy. Placing silver atoms in alternate sites, forming a triad, results in acceptable silver-silver bonds ($2.72 \AA$). The occurrence of such triads with orientation varying randomly from cell to cell is likely

Fig. 1. Electron density section at $z=0$.

Fig. 2. Thermal ellipsoids of atoms near the origin. The set Ag^{*} is partially occupied.
in the silver-rich limit of the stoichiometry of the phase, with occupancy factor 0.5 and stoichiometry $\mathrm{GdAg}_{3.64}$.

There is one extremely short bond distance in the structure between each $\operatorname{Gd}(2)$ atom and the adjacent partially filled Ag^{*} site $(2 \cdot 86 \AA)$. This constriction can be somewhat relieved by a shift of the $\operatorname{Gd}(2)$ atom away from the Ag^{*} site when occupied and a corresponding collapse back toward the site when empty. The thermal ellipsoids plotted in Fig. 2 support this mechanism and further suggest that the silver atoms in the Ag^{*} site may also shift somewhat to alleviate the shortness of the bond.

The experimental occupancy factor for the Ag^{*} site for crystal 3 corresponds to the stoichiometry $\mathrm{GdAg}_{3 \cdot 62}$. The values found for crystals 1 and 2 were higher, corresponding to $\mathrm{GdAg}_{3 \cdot 70 \pm 0.04}$ and $\mathrm{GdAg}_{3 \cdot 68 \pm 0.02}$ respectively. Due to the lack of absorption corrections to the data from these crystals and the consequent loss of precision in the refinement, these values may not be directly comparable with that of crystal 3 . However they reflect a trend toward substantial occupancy of the partially filled atom set regardless of the nominal alloy stoichiometry. Attempts to directly analyse the experimental crystals with an electron microprobe failed owing to the problems of handling such very small samples. An analysis of a larger single crystal, nominally GdAg_{3}, indicated the stoichiometry $\mathrm{GdAg}_{3} \cdot 78 \pm 0 \cdot 15$. While the lack of precision of the analysis renders it inconclusive, when combined with the above observations it tends to further support the contention that the occupancy of the partially filled Ag^{*} set remains close to the maximum and the range of stoichiometry of the phase is probably quite limited.

The authors would like to thank O. D. McMasters for providing the alloys from which the samples were selected for this investigation. Thanks are also due to F. Laabs for performing the electron microprobe analysis and to J. Benson for his assistance with the automated diffractometer.

References

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). U. S. Atomic Energy Commission Report No. ORNL-TM-305.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.

Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
International Tables for X-ray Crystallography (1962). Vol. III, p. 196. Birmingham: Kynoch Press.
McMasters, O. D., Gschneidner, K. A. \& Venteicher, R. F. (1970). Acta Cryst. B26, 1224.

Nelson, J. B. \& Riley, D. P. (1945). Proc. Phys. Soc. (London), 57, 160.
Runnalls, A. J. C. (1956). Canad. J. Chem. 34, 133.
Steeb, S., Godel, D. \& Löhr, C. (1968). J. Less-Common Metals, 15, 137.

[^0]: - The multiplicity of bonds marked ' is dependent on the degree of occupancy of the Ag^{*} set.

